3-Dimensional TQFTs from non-semisimple modular categories

نویسندگان

چکیده

We use modified traces to renormalize Lyubashenko’s closed 3-manifold invariants coming from twist non-degenerate finite unimodular ribbon categories. Our construction produces new topological which we upgrade 2 + 1-TQFTs under the additional assumption of factorizability. The resulting functors provide monoidal extensions mapping class group representations, as discussed in De Renzi et al. (Commun Contemp Math, 2021. https://doi.org/10.1142/S0219199721500917 ). This general framework encompasses important examples non-semisimple modular categories representation theory quasi-Hopf algebras, were left out previous TQFT constructions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing TQFTs from Categories of Sheaves

In this talk, I’ll try to synthesise some of the ideas from the earlier talks in order to describe an example of a fully extended 2d TQFT. This TQFT will be built from geometric data following the “bottom-up” approach of the cobordism hypothesis. That is, we’ll choose a category of geometric objects (quashicoherent sheaves on a stack) to assign to the point, and explore some of the consequences...

متن کامل

Finitely semisimple spherical categories and modular categories are self - dual

We show that every essentially small finitely semisimple k-linear additive spherical category in which k = End(1) is a field, is equivalent to its dual over the long canonical forgetful functor. This includes the special case of modular categories. In order to prove this result, we show that the universal coend of the spherical category with respect to the long forgetful functor is self-dual as...

متن کامل

On non-semisimple fusion rules and tensor categories

Category theoretic aspects of non-rational conformal field theories are discussed. We consider the case that the category C of chiral sectors is a finite tensor category, i.e. a rigid monoidal category whose class of objects has certain finiteness properties. Besides the simple objects, the indecomposable projective objects of C are of particular interest. The fusion rules of C can be block-dia...

متن کامل

On Certain Integral Tensor Categories and Integral Tqfts

We construct certain tensor categories that are dominated by finitely many simple objects. Objects in these categories are modules over rings of algebra integers. We show how to obtain TQFTs defined over algebra integers from these categories.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Selecta Mathematica-new Series

سال: 2022

ISSN: ['1022-1824', '1420-9020']

DOI: https://doi.org/10.1007/s00029-021-00737-z